Capitolo 6. Elaborare XML

6.1. Immergersi

Questo capitolo affronta l'elaborazione dell'XML in Python. Potrebbe esservi utile sapere come è fatto un documento XML, per esempio sapere che è composto da elementi strutturati in modo da formare una gerarchia e così via. Se qualcosa non vi è chiaro, leggete un tutorial su XML prima di proseguire.

Non è essenziale essere un dotto filosofo, ma se avete avuto la sfortuna di affrontare gli scritti di Immanuel Kant, forse apprezzerete il programma di esempio molto più di come potrebbe uno studioso di qualche materia più utile, tipo l'informatica.

Ci sono due principali metodi per lavorare con l'XML. Il primo è chiamato SAX (“Simple API for XML”), funziona leggendo l'XML un pezzo per volta e chiamando un metodo per ogni elemento trovato. Se avete letto il capitolo Elaborare HTML, dovrebbe risultarvi familiare, perché è così che lavora il modulo sgmllib. L'altro è chiamato DOM (“Document Object Model”), funziona leggendo l'intero documento XML in un'unica volta e creando una rappresentazione interna dell'XML basata su classi native Python collegate in una struttura ad albero. Python ha dei moduli standard per entrambi i tipi di parsing, ma questo capitolo affronterà solo l'uso del DOM.

Quello che segue è un completo programma in Python che genera un testo pseudo-casuale basandosi su una grammatica a contenuto libero definita in formato XML. Non preoccupatevi se non capite ancora cosa significhi, esamineremo sia l'input che l'output prodotto dal programma in modo più approfondito andando avanti nel capitolo.

Esempio 6.1. kgp.py

Se non lo avete ancora fatto, potete scaricare questo ed altri esempi usati in questo libro.

"""Kant Generator for Python

Generates mock philosophy based on a context-free grammar

Usage: python kgp.py [options] [source]

Options:
  -g ..., --grammar=...   use specified grammar file or URL
  -h, --help              show this help
  -d                      show debugging information while parsing

Examples:
  kgp.py                  generates several paragraphs of Kantian philosophy
  kgp.py -g husserl.xml   generates several paragraphs of Husserl
  kpg.py "<xref id='paragraph'/>"  generates a paragraph of Kant
  kgp.py template.xml     reads from template.xml to decide what to generate
"""
from xml.dom import minidom
import random
import toolbox
import sys
import getopt

_debug = 0

class NoSourceError(Exception): pass

class KantGenerator:
    """generates mock philosophy based on a context-free grammar"""

    def __init__(self, grammar, source=None):
        self.loadGrammar(grammar)
        self.loadSource(source and source or self.getDefaultSource())
        self.refresh()

    def _load(self, source):
        """load XML input source, return parsed XML document

        - a URL of a remote XML file ("https://book.diveintopython.org/kant.xml")
        - a filename of a local XML file ("~/diveintopython/common/py/kant.xml")
        - standard input ("-")
        - the actual XML document, as a string
        """
        sock = toolbox.openAnything(source)
        xmldoc = minidom.parse(sock).documentElement
        sock.close()
        return xmldoc

    def loadGrammar(self, grammar):                         
        """load context-free grammar"""                     
        self.grammar = self._load(grammar)                  
        self.refs = {}                                      
        for ref in self.grammar.getElementsByTagName("ref"):
            self.refs[ref.attributes["id"].value] = ref     

    def loadSource(self, source):
        """load source"""
        self.source = self._load(source)

    def getDefaultSource(self):
        """guess default source of the current grammar
        
        The default source will be one of the <ref>s that is not
        cross-referenced.  This sounds complicated but it's not.
        Example: The default source for kant.xml is
        "<xref id='section'/>", because 'section' is the one <ref>
        that is not <xref>'d anywhere in the grammar.
        In most grammars, the default source will produce the
        longest (and most interesting) output.
        """
        xrefs = {}
        for xref in self.grammar.getElementsByTagName("xref"):
            xrefs[xref.attributes["id"].value] = 1
        xrefs = xrefs.keys()
        standaloneXrefs = [e for e in self.refs.keys() if e not in xrefs]
        if not standaloneXrefs:
            raise NoSourceError, "can't guess source, and no source specified"
        return '<xref id="%s"/>' % random.choice(standaloneXrefs)

    def reset(self):
        """reset parser"""
        self.pieces = []
        self.capitalizeNextWord = 0

    def refresh(self):
        """reset output buffer, re-parse entire source file, and return output
        
        Since parsing involves a good deal of randomness, this is an
        easy way to get new output without having to reload a grammar file
        each time.
        """
        self.reset()
        self.parse(self.source)
        return self.output()

    def output(self):
        """output generated text"""
        return "".join(self.pieces)

    def randomChildElement(self, node):
        """choose a random child element of a node
        
        This is a utility method used by do_xref and do_choice.
        """
        choices = [e for e in node.childNodes
                   if e.nodeType == e.ELEMENT_NODE]
        chosen = random.choice(choices)            
        if _debug:                                 
            sys.stderr.write('%s available choices: %s\n' % \
                (len(choices), [e.toxml() for e in choices]))
            sys.stderr.write('Chosen: %s\n' % chosen.toxml())
        return chosen                              

    def parse(self, node):         
        """parse a single XML node
        
        A parsed XML document (from minidom.parse) is a tree of nodes
        of various types.  Each node is represented by an instance of the
        corresponding Python class (Element for a tag, Text for
        text data, Document for the top-level document).  The following
        statement constructs the name of a class method based on the type
        of node we're parsing ("parse_Element" for an Element node,
        "parse_Text" for a Text node, etc.) and then calls the method.
        """
        parseMethod = getattr(self, "parse_%s" % node.__class__.__name__)
        parseMethod(node)

    def parse_Document(self, node):
        """parse the document node
        
        The document node by itself isn't interesting (to us), but
        its only child, node.documentElement, is: it's the root node
        of the grammar.
        """
        self.parse(node.documentElement)

    def parse_Text(self, node):    
        """parse a text node
        
        The text of a text node is usually added to the output buffer
        verbatim.  The one exception is that <p class='sentence'> sets
        a flag to capitalize the first letter of the next word.  If
        that flag is set, we capitalize the text and reset the flag.
        """
        text = node.data
        if self.capitalizeNextWord:
            self.pieces.append(text[0].upper())
            self.pieces.append(text[1:])
            self.capitalizeNextWord = 0
        else:
            self.pieces.append(text)

    def parse_Element(self, node): 
        """parse an element
        
        An XML element corresponds to an actual tag in the source:
        <xref id='...'>, <p chance='...'>, <choice>, etc.
        Each element type is handled in its own method.  Like we did in
        parse(), we construct a method name based on the name of the
        element ("do_xref" for an <xref> tag, etc.) and
        call the method.
        """
        handlerMethod = getattr(self, "do_%s" % node.tagName)
        handlerMethod(node)

    def parse_Comment(self, node):
        """parse a comment
        
        The grammar can contain XML comments, but we ignore them
        """
        pass

    def do_xref(self, node):
        """handle <xref id='...'> tag
        
        An <xref id='...'> tag is a cross-reference to a <ref id='...'>
        tag.  <xref id='sentence'/> evaluates to a randomly chosen child of
        <ref id='sentence'>.
        """
        id = node.attributes["id"].value
        self.parse(self.randomChildElement(self.refs[id]))

    def do_p(self, node):
        """handle <p> tag
        
        The <p> tag is the core of the grammar.  It can contain almost
        anything: freeform text, <choice> tags, <xref> tags, even other
        <p> tags.  If a "class='sentence'" attribute is found, a flag
        is set and the next word will be capitalized.  If a "chance='X'"
        attribute is found, there is an X% chance that the tag will be
        evaluated (and therefore a (100-X)% chance that it will be
        completely ignored)
        """
        keys = node.attributes.keys()
        if "class" in keys:
            if node.attributes["class"].value == "sentence":
                self.capitalizeNextWord = 1
        if "chance" in keys:
            chance = int(node.attributes["chance"].value)
            doit = (chance > random.randrange(100))
        else:
            doit = 1
        if doit:
            for child in node.childNodes: self.parse(child)

    def do_choice(self, node):
        """handle <choice> tag
        
        A <choice> tag contains one or more <p> tags.  One <p> tag
        is chosen at random and evaluated; the rest are ignored.
        """
        self.parse(self.randomChildElement(node))

def usage():
    print __doc__

def main(argv):                         
    grammar = "kant.xml"                
    try:                                
        opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="])
    except getopt.GetoptError:          
        usage()                         
        sys.exit(2)                     
    for opt, arg in opts:               
        if opt in ("-h", "--help"):     
            usage()                     
            sys.exit()                  
        elif opt == '-d':               
            global _debug               
            _debug = 1                  
        elif opt in ("-g", "--grammar"):
            grammar = arg               

    source = "".join(args)              

    k = KantGenerator(grammar, source)
    print k.output()

if __name__ == "__main__":
    main(sys.argv[1:])

Esempio 6.2. toolbox.py

"""Miscellaneous utility functions"""

def openAnything(source):            
    """URI, filename, or string --> stream

    This function lets you define parsers that take any input source
    (URL, pathname to local or network file, or actual data as a string)
    and deal with it in a uniform manner.  Returned object is guaranteed
    to have all the basic stdio read methods (read, readline, readlines).
    Just .close() the object when you're done with it.
    
    Examples:
    >>> from xml.dom import minidom
    >>> sock = openAnything("http://localhost/kant.xml")
    >>> doc = minidom.parse(sock)
    >>> sock.close()
    >>> sock = openAnything("c:\\inetpub\\wwwroot\\kant.xml")
    >>> doc = minidom.parse(sock)
    >>> sock.close()
    >>> sock = openAnything("<ref id='conjunction'><text>and</text><text>or</text></ref>")
    >>> doc = minidom.parse(sock)
    >>> sock.close()
    """
    if hasattr(source, "read"):
        return source

    if source == '-':
        import sys
        return sys.stdin

    # try to open with urllib (if source is http, ftp, or file URL)
    import urllib                         
    try:                                  
        return urllib.urlopen(source)     
    except (IOError, OSError):            
        pass                              

    # try to open with native open function (if source is pathname)
    try:                                  
        return open(source)               
    except (IOError, OSError):            
        pass                              

    # treat source as string
    return StringIO.StringIO(str(source)) 

Lanciate kgp.py senza opzioni, il programma analizzerà la grammatica-XML predefinita in kant.xml e stamperà alcuni paragrafi degni della filosofia e dello stile di Immanuel Kant.

Esempio 6.3. Esempio di output di kgp.py

[f8dy@oliver kgp]$ python kgp.py
     As is shown in the writings of Hume, our a priori concepts, in
reference to ends, abstract from all content of knowledge; in the study
of space, the discipline of human reason, in accordance with the
principles of philosophy, is the clue to the discovery of the
Transcendental Deduction.  The transcendental aesthetic, in all
theoretical sciences, occupies part of the sphere of human reason
concerning the existence of our ideas in general; still, the
never-ending regress in the series of empirical conditions constitutes
the whole content for the transcendental unity of apperception.  What
we have alone been able to show is that, even as this relates to the
architectonic of human reason, the Ideal may not contradict itself, but
it is still possible that it may be in contradictions with the
employment of the pure employment of our hypothetical judgements, but
natural causes (and I assert that this is the case) prove the validity
of the discipline of pure reason.  As we have already seen, time (and
it is obvious that this is true) proves the validity of time, and the
architectonic of human reason, in the full sense of these terms,
abstracts from all content of knowledge.  I assert, in the case of the
discipline of practical reason, that the Antinomies are just as
necessary as natural causes, since knowledge of the phenomena is a
posteriori.
    The discipline of human reason, as I have elsewhere shown, is by
its very nature contradictory, but our ideas exclude the possibility of
the Antinomies.  We can deduce that, on the contrary, the pure
employment of philosophy, on the contrary, is by its very nature
contradictory, but our sense perceptions are a representation of, in
the case of space, metaphysics.  The thing in itself is a
representation of philosophy.  Applied logic is the clue to the
discovery of natural causes.  However, what we have alone been able to
show is that our ideas, in other words, should only be used as a canon
for the Ideal, because of our necessary ignorance of the conditions.

[...snip...]

Il risultato è ovviamente un discorso completamente incomprensibile. Insomma, non completamente incomprensibile. È corretto dal punto di vista sintattico e grammaticale -- anche se molto prolisso Kant non era proprio il tipo che andava subito al sodo. Alcune affermazioni potrebbero essere realmente vere, altre vistosamente false, la maggior parte semplicemente incoerenti. Ma comunque nello stile di Immanuel Kant.

Lasciatemi ripetere che tutto questo è molto più divertente se studiate o avete studiato filosofia.

La cosa interessante di questo programma è che non contiene niente di Kant-specifico. Tutto il contenuto dell'esempio precedente è estratto dal file di grammatica kant.xml. Se diciamo al programma di usare un altro file di grammatica (cosa che possiamo specificare dalla linea di comando), il risultato sarà completamente diverso.

Esempio 6.4. Semplice output di kgp.py

[f8dy@oliver kgp]$ python kgp.py -g binary.xml
00101001
[f8dy@oliver kgp]$ python kgp.py -g binary.xml
10110100

Più avanti in questo capitolo vedremo con attenzione la struttura del file di grammatica . Per ora, tutto quello che dovete sapere è che la grammatica definisce la struttura di ciò che viene prodotto e che il programma kgp.py legge la grammatica e sceglie casualmente che parole prendere e dove inserirle.